
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Non-Functional Data Layer Patterns for Cloud
Applications

Steve Strauch, Vasilios Andrikopoulos, Uwe Breitenbücher,
Oliver Kopp, Frank Leymann

© 2012 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{StrauchABKL2012,
author = {Steve Strauch, Vasilios Andrikopoulos, Uwe Breitenbuecher,

Oliver Kopp, and Frank Leymann},
title = {Non‐Functional Data Layer Patterns for Cloud Applications},
booktitle = {Proceedings of the 4th IEEE International Conference on Cloud

Computing Technology and Science, CloudCom 2012,
3‐6 December 2012, Taipei, Taiwan},

year = {2012},
pages = {601‐605},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
601

Non-Functional Data Layer Patterns for Cloud Applications

Steve Strauch, Vasilios Andrikopoulos, Uwe Breitenbuecher, Oliver Kopp, Frank Leymann
Institute of Architecture of Application Systems (IAAS),

University of Stuttgart, Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Abstract—Cloud services allow for hosting applications par-
tially or completely in the Cloud by migrating their components
and data. Especially with respect to data migration, a series of
functional and non-functional challenges like data confidential-
ity arise when considering private and public Cloud data stores.
In this paper we identify some of these challenges and propose a
set of reusable solutions focusing on the non-functional aspects,
organized together as a set of Cloud Data Patterns.

Keywords-Data layer; Cloud applications; Data migration;
Cloud Data Patterns; Cloud data stores

I. INTRODUCTION

Cloud computing has become increasingly popular with
the industry due to the clear advantage of reducing capital
expenditure and transforming it into operational costs [1]. To
take advantage of Cloud computing, an existing application
may be moved to the Cloud or designed from the beginning to
use Cloud technologies. Applications are typically built using
a three layer architecture model consisting of a presentation
layer, a business logic layer, and a data layer [2]. The
presentation layer describes the application-users interactions,
the business layer realizes the business logic and the data
layer is responsible for application data storage. The data
layer is in turn subdivided into the Data Access Layer (DAL)
and the Database Layer (DBL). The DAL encapsulates the
data access functionality, while the DBL is responsible for
data persistence and data manipulation. Figure 1 visualizes
the positioning of the various layers.

Each application layer can be hosted using different Cloud
deployment models. Possible Cloud deployment models, also
shown in Figure 1, are: Private, Public, Community, and
Hybrid Cloud [3]. Figure 1 shows the various possibilities
for distributing an application using the different Cloud types.
The “traditional” application not using any Cloud technology
is shown on the left of the figure. In this context, “on-premise”
denotes that the Cloud infrastructure is hosted inside the
company and “off-premise” denotes that it is hosted outside
of the company.

In this work we focus on the lower two layers of Figure 1,
the DAL and DBL layers of the application. Application
data is typically moved to the Cloud because of e. g., Cloud
bursting, data analysis or backup and archiving. Using Cloud
technology leads to challenges such as incompatibilities with
the database layer previously used or the accidental disclosing
of critical data by e. g., moving them to a Public Cloud.

Incompatibilities in the DBL may refer to inconsistencies
between the functionality of an existing traditional DBL,
and the functionality and characteristics of an equivalent
DBL provided in the Cloud. For instance, the Google App
Engine Datastore [4] is incompatible with Oracle Corporation
MySQL, version 5.1 [5], because the Google Query Lan-
guage [6] supports only a subset of the functionality provided
by SQL, e. g., joins are not supported. An application relying
on such functionalities cannot therefore have its data moved
to the Cloud without deep changes to its implementation.
It has to be noted here that, for the purposes of this work,
we assume that the decision to migrate the data layer to the
Cloud has already been made based on criteria such as cost,
effort etc. [7], [8].

The contribution of this paper is the identification of such
challenges and the description of a set of Cloud Data Patterns
as the best practices to deal with them. As defined in [9], a
Cloud Data Pattern describes a reusable and implementation
technology-independent solution for a challenge related to the
data layer of an application in the Cloud for a specific context.
For this purpose, in the following we present an initial catalog
of Cloud Data Patterns dealing with non-functional challenges
of having the application data layer realized in the Cloud.
We focus on two aspects: enabling data store scalability and
ensuring data confidentiality. The presented list of patterns
is a result of our collaboration with industry partners and
research projects. We do not claim that the list of patterns is
complete and we plan to expand it in the future.

Traditional

Ap
pl
ic
at
io
n
La
ye
rs

Presentation
Layer

Application

Business
Layer

Data Access
Layer

Database
Layer

Presentation
Layer

Business
Layer

Data Access
Layer

Database
Layer

Private
Cloud

Community
Cloud

Deployment
Models

Hybrid Cloud

Public
Cloud

Presentation
Layer

Presentation
Layer

Business
Layer

Business
Layer

Data Access
Layer

Data Access
Layer

Database
Layer

Database
Layer

Data
Layer

Figure 1. Overview of Cloud Deployment Models and Application Layers

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
602

The presentation of the patterns uses the format defined
by Hohpe and Woolf [10], consisting of the description of a
context where the pattern is applicable; the challenge posed;
external or internal forces that impose constraints that make
the problem difficult to solve; a proposed solution for the
challenge; detailed technical issues (as sidebars); the results
of applying the proposed solution in the defined context; an
example of use and other patterns to be considered (next). A
representative icon and a graphical sketch of the pattern are
also provided.

The remainder of this paper presents our proposed set of
non-functional Cloud Data Patterns as a set of best practices.
Section II focuses on patterns for addressing challenges
related to the elasticity of data stores. Section III summarizes
a set of patterns we defined in [9] for the purpose of
preserving data confidentiality. A presentation of related work
is contained in Section IV; conclusions and future work in
Section V.

II. SCALABILITY PATTERNS

These patterns focus on providing solutions for ensuring
an acceptable Quality of Service (QoS) level by means of
scalability in case of increasing data read or data write
load. When considering the data, rather than the database
system, there are two scaling options available: vertical and
horizontal data scaling. Vertical data scaling can be achieved
by moving the data to a more powerful database system,
which offers better performance, advanced functionalities,
or both. Horizontal data scaling is based on partitioning
the data according to functional groups [11]. Examples for
functional groups are European customers and American
customers. Each functional group may be itself distributed
among different database systems to increase search speed.
This method is also called sharding [12]. In this section we
present two patterns, expanding the work of Brian Adler [13].
More specifically:

A. Local Database Proxy

The Local Database Proxy enables read scalability by
requiring a master/multiple slave model and forwarding read
requests to any read replica.

Context: A Cloud data store does not inherently
support horizontal scalability for data reads.
When the data read load of the application
permanently increases, e. g., due to increased
user acceptance and usage, a mechanism for

horizontally scaling read requests is required. Additionally,
the business logic of processing user requests is also moved
to the Cloud.

Challenge: How can a Cloud data store not supporting
horizontal data read scalability provide that functionality?

Traditional

Presentation
Layer

Application

Business
Layer

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Database
Layer

Database
Layer*

Business
Layer

Legend

Dataflow
Migration
Partial Migration
Modified Component *

Ap
pl

ic
at

io
n

La
ye

rs

Data Access
Layer*

Data Access
Layer*

Figure 2. Sketch of Local Database Proxy

Forces: In case there was one centralized database proxy,
which might suffer an outage, there would be no possibility
for the business layer to access the database layer. This
might be overcome by using at least two centralized database
proxies to avoid the single point of failure vulnerability.
The use of local database proxies ensures that only some
application servers in the business layer will be affected by
an outage of the local proxy.

Solution: The Cloud data store is configured using a single
master/multiple slave model, denoted by “Database Layer*”
in Figure 2. “Database Layer*” represents both the master
and the multiple slaves. The master handles data writes and
the slaves are used as replicas serving read requests only. In
case the application has to deal with stale data, the replication
of data may be lazy. A proxy component is locally added
below each data access layer. All requests from each data
layer are routed through the respective proxy. The proxy
routes data read requests to any slave and write requests to
the master.

Sidebars: The data access layer has to be configured to use
the respective local database proxy. An appropriate replication
strategy has to be applied at the Cloud data store to ensure
a proper balance between consistency and availability [14].
This technique is not recommended for applications with
high update frequency where different parts of the application
read and write data concurrently.

Results: The read load of the Cloud data store is distributed
among several slave data stores used as read replicas. When
the read load increases, additional slaves may be added. The
master is still a potential bottleneck. This can be overcome
by using a watchdog solution for the master. In case of an
outage of the master is detected, one of the slave databases
can become the new master.

Example: A public transport company offering bus routes
hosts its data store infrastructure in a Private Cloud us-
ing MySQL on Eucalyptus Machine Images (EMI) using
Eucalyptus [15]. The front-end application is reading the
available routes and the back-end application is updating
the route information with live info. The public Cloud hosts

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
603

the business layer, while the bus route management is still
hosted on-premise. The application is rewritten to use the
local database proxy to access the data. The data is moved to
the private Cloud. One write master and several read slaves
are installed to enable coping with high read loads.

Next: In case both data read and writes should scale the
“Local Sharding-Based Router” pattern has to be considered.

B. Local Sharding-Based Router

The Local Sharding-Based Router enables read and
write scalability by requiring the independent splitting and
distributing of data into functional groups and forwarding
read and write requests to the corresponding shard.

Context: A Cloud data store does not inherently
support horizontal scalability for data reads
and writes. When the data read load of the
application permanently increases, e. g., due
to increased user usage, a mechanism for

horizontally scaling read requests to the data store is required.
Furthermore, a permanent high data update rate of the
application requires also horizontally scaling of data writes.
The business logic of processing user requests is moved to
the Cloud.

Challenge: How can a Cloud data store not supporting
horizontal data read and write scalability provide that
functionality?

Forces: Considering the local database proxy pattern, the
first solution to choose might be a configuration of several
slave databases used as read replicas together with several
master databases used as write replicas. As each data write to
any master has to be replicated to all other master databases,
leading to additional data writes, this approach is not efficient
for horizontal scaling data writes. In case there was one
centralized sharding-based router, which might suffer an
outage, there would be no possibility for the business layer
to access the database layer. This might be overcome by using
at least two centralized sharding-based routers to avoid single
point of failure. If the additional sharding-based routers are
configured as fail-over, the capacity of the active sharding-
based router might be too small. If the additional sharding-
based routers are configured as independent units, each of
them is still a single point of failure. The usage of a local
sharding-based router ensures that only some application
servers in the business layer will be affected by an outage.

Solution: The data to be stored in the Cloud are split
horizontally. This means that tables with many rows are split
into several data stores. Each data store is assigned a distinct
number of rows of the original table. This technique is called
“sharding” [12]. A local sharding-based router is added locally
below each data access layer (Figure 3). All requests from
each data layer are routed through the respective sharding-
based router. The local sharding-based router forwards data
read and write requests to the appropriate Cloud data store.

Traditional

Presentation
Layer

Application

Business
Layer

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Database
Layer

Database
Layer*

Business
Layer

Legend

Dataflow
Migration
Partial Migration
Modified Component *

Ap
pl

ic
at

io
n

La
ye

rs

Data Access
Layer*

Data Access
Layer*

Figure 3. Sketch of Local Sharding-Based Router

Sidebars: The data to be split have to be independent from
each other. A business logic requiring many joins involving
multiple tables of different stores leads to an increased
processing time. The pattern is not applicable in case the
data cannot be split independently.

Results: The data are categorized and independently split
among multiple Cloud data stores. Thus, horizontal read and
write scalability is enabled.

Example: An online store hosts its data store infrastructure
in a Private Cloud using MySQL on Eucalyptus Machine
Images (EMIs) using Eucalyptus. The database contains the
available products and the number of items in stock. In case
an item is bought, the number of items in stock is reduced.
New items put in the stock increase this number. As the
online store offers many products of different categories, the
product data is split using the respective category to multiple
MySQL databases. The front-end application is hosted in the
public Cloud. The data requests are routed through a local
sharding-based router, which selects the appropriate data
source. The back-end application is still hosted traditionally
and is modified to use a local sharding-based router.

Next: In case only data reads have to be distributed in
order to scale, the “Local Database Proxy” pattern has to be
considered.

III. CONFIDENTIALITY PATTERNS

In our previous work [9], we presented Cloud Data
Patterns for confidentiality. They deal with data to be kept
private and secure, commonly referred to as “critical data”.
In the following, we summarize these patterns.

Critical data can be categorized into different
confidentiality levels. As data may be
categorized using different categorizations (or
not categorized at all), the confidentiality level
has to be harmonized. The Confidentiality

Level Data Aggregator provides one confidentiality level
for data from different sources with potentially different
confidential categorizations on different scales.

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
604

The Confidentiality Level Data Splitter splits
data according to predefined privacy levels.
This is required when an application writes
data to multiple data stores with different
confidentiality levels.

The Filter of Critical Data ensures that
no confidential data are disclosed to the
public. The filter enforces that no data leave
the private Cloud by filtering out critical
data.

The Pseudonymizer of Critical
Data implements pseudonymization.
Pseudonymization is a technique to provide a
masked version of the data to the public while
keeping the relation to the non-masked data in

private [16]. This enables processing of non-masked data in
the private environment when required.

The Anonymizer of Critical Data implements
anonymization [16]. Anonymization is a tech-
nique to provide a reduced version of the critical
data to the public while ensuring that it is
impossible to relate the reduced version to the

critical data.

IV. RELATED WORK

Pattern languages defining reusable solutions for recurring
challenges in architecture have been first proposed by
Christopher Alexander [17]. A series of well-established
patterns have been previously identified concerning, e. g.,
software engineering [18], enterprise integration [10] and
application architecture [19]. Such general works do not
consider building or migrating the database layer in the
Cloud. Nevertheless, we reuse the pattern format defined
by Hohpe and Woolf [10] for describing our Cloud Data
Patterns.

Petcu [20] proposes Cloud usage patterns for Cloud-
based applications based on existing use cases. Fehling et
al. [21] and Pallmann [22] provide high-level architectural
patterns to design, build, and manage applications using
Cloud services. None of these works discusses patterns for
building and/or moving the data layer to the Cloud. Adler [13]
provides contributions regarding best practices for scalable
applications in the Cloud. In this paper we reuse some of the
results presented in [13] to form the non-functional patterns
presented in Section II.

ARISTA Networks, Inc. [23] provides seven patterns for
Cloud computing of which only one (the Cloud Storage
pattern) deals with data in the Cloud. Nock [24] provides
patterns for data access in enterprise applications, without
however treating Cloud data stores in the same manner as
we do.

Schumacher et al. [25] present reusable solutions for secur-
ing applications, but do not deal with data pseudonymization,
data anonymization, and data filtering. Hafiz [26] presents
a privacy design pattern catalog consisting of nine patterns
achieving anonymity by mixing data with data from other
sources instead of providing a general pseudonymization,
anonymization, or filtering pattern. Creese et al. [27] con-
sider design patterns for data protection of Cloud services.
Romanosky et al. [28] describe privacy patterns applicable for
online interactions. Schumacher [29] introduces an approach
for mining security patterns from security standards and
presents two patterns for anonymity and privacy. These works
do not consider building a data layer in the Cloud or migrating
an existing one there; some of the mechanisms identified
however (e. g., pseudonymization) are reused in the Cloud
Data Patterns we propose.

Finally, Schuemmer [30] presents patterns filtering personal
information to establish boundaries for interactions between
users utilizing collaborative systems. Our patterns are more
general in the sense that they are not limited to filtering of
personal data.

V. CONCLUSIONS AND FUTURE WORK

This work presented a set of reusable solutions to face the
challenges of moving the data layer to the Cloud or designing
an application using a data store in the Cloud, focusing on the
non-functional aspect. The challenges and proposed solutions
were organized as a non-exhaustive catalog of Cloud Data
Patterns that was the result of our collaboration with industry
partners and research projects. Patterns for elasticity and
confidentiality issues in particular were discussed.

The presentation of the patterns did not go into technical
details. For instance, scalability and single points of failure
in the realization of the patterns has not been treated
appropriately. A possible scalability mechanism and a counter-
measure to single point of failure is to implement each
pattern using a hot-pool of pattern realizations in the Cloud.
A hot-pool consists of multiple instances of the realization
component and a watchdog. For example, implementing
the Local Sharding-Based Router (Section II) as a single
component may result in a bottleneck, or even to a complete
failure of the data access/database layer connection.

In addition, Cloud data stores can be considered as
appliances where a fixed set of functionality is provided [13].
Each data store is geared towards a specific application
domain, and therefore does not come with all possible
features. Furthermore, the offered functionalities may be
configurable but not extensible. For this purpose, in our
current work we also discuss functional patterns. Such issues
and their possible solutions will be investigated as part of
a larger scale evaluation of our patterns using an industrial
case study. Toward this direction, we also plan to formalize
a general composition method of Cloud Data Patterns and

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
605

expand our catalog with identified patterns presented here
with more patterns.

ACKNOWLEDGMENTS

The research leading to these results has partially received
funding from the 4CaaSt project part of the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 258862 and the BMWi-project Cloud-Cycle
(01MD11023). We thank Tobias Unger for his valuable input.

REFERENCES

[1] M. Armbrust et al., “Above the Clouds: A Berkeley View
of Cloud Computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[2] J. Dunkel et al., Systemarchitekturen fuer Verteilte Anwendun-
gen: Client-Server, Multi-Tier, SOA, Event Driven Architec-
tures, P2P, Grid, Web 2.0. Hanser Verlag, 2008.

[3] P. Mell and T. Grance, “Cloud Computing Definition,” Na-
tional Institute of Standards and Technology, 2009.

[4] Google, Inc., “Google App Engine Datastore,” 2011.
[Online]. Available: https://developers.google.com/appengine/
docs/python/datastore/

[5] Oracle Corporation, “MySQL,” 2011, http://www.mysql.com.

[6] Google, Inc., “Google App Engine GQL Reference,”
2011, https://code.google.com/intl/en/appengine/docs/python/
datastore/gqlreference.html.

[7] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam, “To
move or not to move: the economics of cloud computing,” in
Proceedings of HotCloud’11. Berkeley, CA, USA: USENIX
Association, 2011.

[8] M. Menzel and R. Ranjan, “Cloudgenius: decision support
for web server cloud migration,” in Proceedings of WWW ’12.
New York, NY, USA: ACM, 2012.

[9] S. Strauch, U. Breitenbücher, O. Kopp, F. Leymann, and
T. Unger, “Cloud Data Patterns for Confidentiality,” in Pro-
ceedings of CLOSER’12. SciTePress, 2012.

[10] G. Hohpe and B. Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 2003.

[11] K. Küspert and J. Nowitzky, “Partitionierung von Datenbank-
tabellen,” Informatik-Spektrum, vol. 22, pp. 146–147, 1999.

[12] J. Zawodny and D. Balling, High Performance MySQL:
Optimization, Backups, Replication, Load-balancing, and
More. O’Reilly & Associates, Inc. Sebastopol, CA, USA,
2004.

[13] B. Adler, “Building Scalable Applications In the Cloud:
Reference Architecture & Best Practices, RightScale Inc.”
2011, http://www.rightscale.com/info center/white-papers/
building-scalable-applications-in-the-cloud.php.

[14] D. Pritchett, “BASE: An ACID Alternative,” Queue, vol. 6,
no. 3, pp. 48–55, 2008.

[15] Eucalyptus Systems, Inc., “Eucalyptus,” 2011. [Online].
Available: http://www.eucalyptus.com

[16] Federal Ministry of Justice, “German Federal Data
Protection Law,” 1990. [Online]. Available: http://www.
gesetze-im-internet.de/bdsg 1990/

[17] C. Alexander et al., A Pattern Language. Towns, Buildings,
Construction. Oxford University Press, 1977.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman, 1994.

[19] M. Fowler et al., Patterns of Enterprise Application Architec-
ture. Addison-Wesley Professional, November 2002.

[20] D. Petcu, “Identifying Cloud Computing Usage Patterns,” in
Proceedings of IEEE CLUSTER WORKSHOPS’10. IEEE,
October 2010.

[21] C. Fehling et al., “An Architectural Pattern Language of Cloud-
based Applications,” in Proceedings of PLoP’11. ACM, 2011.

[22] D. Pallmann, “Windows Azure Design Patterns,” 2011.
[Online]. Available: http://neudesic.blob.core.windows.net/
azuredesignpatterns/index.html

[23] ARISTA Networks, Inc., “Cloud Networking: Design
Patterns for Cloud-Centric Application Environments,”
2009, http://www.aristanetworks.com/smt/user/upload/File/
downloads/CloudCentricDesignPatterns.pdf.

[24] C. Nock, Data Access Patterns: Database Interactions in
Object Oriented Applications. Prentice Hall Professional
Technical Reference, 2008.

[25] M. Schumacher et al., Security Patterns: Integrating Security
and Systems Engineering. Wiley, 2006.

[26] M. Hafiz, “A Collection of Privacy Design Patterns,” in
Proceedings of PLoP’06, New York, NY, USA, 2006.

[27] S. Creese et al., “Data Protection-Aware Design for Cloud
Services,” in Proceedings of CloudCom’09, 2009.

[28] S. Romanosky et al., “Privacy Patterns for Online Interactions,”
in Proceedings of PLoP’06. ACM, 2006.

[29] M. Schumacher, “Security Patterns and Security Standards,”
in Proceedings of EuroPLoP’02, 2002.

[30] T. Schuemmer, “The Public Privacy–Patterns for Filtering Per-
sonal Information in Collaborative Systems,” in Proceedings
of CHI’04, 2004.

All links were last followed on October 5, 2012.

	cover-IEEE
	10.352

